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§ 1.

1. THE elements of which every distinct analytical process is composed are three,
namely, first the Subject, that is, the symbol on which a certain notified operation is
to be performed; secondly, the Operation itself, represented by its own symbol;
thirdly, the Result, which may be connected with the former two by the algebraic
sign of equality. -

Thus let a be the subject representing, we may suppose, some quantity, b the sym-
bol for multiplication by b, and ¢ the result or product ; for greater distinctness let the
subject be inclosed in square brackets, the analytical process in this case is [a] b = c.

Again, let 2" be the subject, </ a symbol of operation denoting that z must be
changed into « + h, and (x 4 %)" will evidently be the result, or

@)y = (v + h)"

Again, let ” be the subject, A a symbol of operation, which indicates that we are
to subtract the subject itself from that which it becomes when « is changed into » + 4,
which is usually called taking the finite difference, then the result is

& — o,
or
[a"] A = [a"] (d" — 1).

Lastly, let d, denote the operation of taking the finite difference, and after dividing
it by 4, then putting A = 0, which is the same as finding the differential coefficient
of the subject, which we may suppose represented by u, then

du
(Wl d, =
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180 MR. MURPHY ON THE THEORY OF ANALYTICAL OPERATIONS.

2. The operations written as above are monomial, consisting of only one term ; and
polynomial operations give the sums or the differences of the results of the respective
monomials of which they are formed, according as these monomials are affected by
the signs -4 or —.

Thus if 1 as an operation be understood as the multiplying of the subject by unity
which leaves it unaltered, and the symbols +J, A have the same signification as in
art. 1, then |

(W] (b—1)=[u] A
[u] (A + 1) = [u] ¥,
where the subject u is ahy quantity whatever.

When general relations, such as these, between different symbols exist independ-
ently of the particular value of the subject, we may abstract the consideration of
the latter, and the sign = between symbols of operation being understood to indicate
that they are universally equivalent, the symbols used in art. 1 would have the fol-
lowing relations independent of the subject.

A="1L_]7 '“J’:A""l) \I’*A:])
d _A~x[/—1

h TR
when 4 is put = 0.

3. A compound operation consists of a series of simple defined operations, mono-
mial or polynomial, the subject of each individual in this series after the first being
the result of all the preceding operations.

Thus [«%] a+ A d, denotes that first 22 must be multiplied by @, which gives a 22;
then the operation 4, which denotes the putting « 4 A for , gives a (x 4 h)?; next
the operation A will give a (x +24)2—a (x4 W) or a (2 hx + 3 42) ; and lastly,
the symbol of taking the differential coefficient relative to x gives 2 2 a: the final or
complete result is therefore

[(2laL Ad,=2ha.

When all the symbols in a compound operation are exactly the same, then for
abridgment the whole operation is represented by writing an index to the right of the
symbol for the simple operation over it, this index expressing the number of times -
the simple operation is repeated. Thus

(2998 = 2] 4 b = [@+ A bd = [z + 2 )2 & = (¢ + 3 AP
But when the simple operations are different, they must be written consecutively

in the order in which they are to be performed, unless that order of arrangement by
the mutual relations of the operations should be indifferent. Thus

[@lay=["T"Td=(@+n""'
I de=[a+ A e=a(x+ k)"
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But '

[ ad=[a2"]y=a(x+h)"

@] da=[(x+h)Ta=a(z+ )"

in the latter case the order of the operations is indifferent, because the operation

does not act on the multiplier @, and for the contrary reason the order of x + is_fived
in the first case.

Operations are therefore relatively fixed or free; in the first case a change in the
order in which they are to be performed would affect the result, in the second case it
would not do so.

In a compound operation any part of the symbols may be taken conjointly with
the subject in the square brackets, their result being the subject for the compound
operation of the remaining symbols. Thus

[ ayAd, = [aa?) 4 Ad,

§ 2.

4. Linear operations in analysis are those of which the action on any subject is
made up by the several actions on the parts, connected by the sign 4 or —, of
which the subject is composed.

Let p denote the operation of multiplying by a quantity p, then

[a+b]p=[dp+ [B]p;
this operation is therefore linear.

Let +/ denote the operation of changing x into « + %, then if f (z), ¢ («) be any
functions of x, we have

f@te@d=f@+h+e@@+h=[ @4+ [e@]
which shows that +J is also a linear operation.
Let X + & represent the subject acted on, and 4, ¢ any linear operations, then
X+80@+)=X+g0+[X+£/7
=[X]0+ g0+ [X]0+[E]¢
=XJ0+)+E @+
hence polynomial operations of which the parts are linear possess themselves the
same character.
Thus A the operation of Finite Differences is linear, because A = + — 1, the ope-

ration 4 of changing x into # 4 & and the multiplying by unity being both linear.
Also

[X4£00=[X04£0]0
= [X]00 4[5 00,
which shows that the compounds of linear operations are also linear.

The operation of taking the differential coefficient is therefore linear, for the opera-
282



182 MR. MURPHY ON THE THEORY OF ANALYTICAL OPERATIONS.

tion A of finite differences and that of dividing by % being both of that character,
the compound A. _}11_ is generally linear, and must remain so in the limiting state

when % vanishes. Hence every function of a linear operation is itself of the same
class of operations.

5. The composition of polynomial linear operations is effected in the same manner
as algebraic multiplication ; with, however, this peculiarity—the order of the com-
pound operations, when not relatively free, must be strictly preserved.

Thus let 6, ¢’ 4, / represent linear operations : then

O+ G+ =[] (O:+0:4+0/+0/);
for «+/ being linear will act on each of the parts [«] 0, [#] ¢, which form their subject.

Again, when 0, §' are relatively fixed, [«] (0 4 ) will not, as in algebraic involu-
tion, be identical with [«] (62 4 2060 4 02), its correct value being [u] (0> + 0'0
+ 060 4+ 02); which, however, is the same as the former expression, when 0, ¢ are
relatively free ; for then 60 =090

Similarly

O+ 0P =(B+004+000+020)+ (020 + 000 + 062 4 63);
or putting 6 ¢ for the sum of the compound operations in which 6 twice enters, and
¢ and ¢® for the sum of those containing 0 once and 6' twice, this may also be
written '
O+ 03=0+ 620 400 4 03,
and employing a similar notation, we shall have, when = is a positive integer,
O+ 0)"=0" 40" Vg4 oD g® 4 6P gnD p g 4 g™,

The term 6"~ ¢/ in this formula is the sum of # terms, formed by placing ¢ at the
beginning, at the end, and in all the » — 2 intermediate positions of the expression
066..... (» — 1) times. Similarly, by the known theory of permutations, 6" g
n(n—1)

1.2
Hence when 0, ¢ are relatively free, we have

n(n—1)

O+0)=04+n6"""0 +—2=. 0" 02+ ... 000" 40

is the sum of terms, &c.

6. The following theorems are immediately deducible from the general expansion
of the preceding article:
Since A =+ — 1, therefore
n(n—1) n(n—1)(n—

A= — 1 = — T g 2D ez 2OZDOZD) gems )y

or, if we introduce the subject f (#), and observe that [ f(z)] 4" =/ (¢ + n k), then
n(n=—1)

Af(@) =f(@+nh) = nfiz+ @m—1). k) + 550 f (24 0—2) B} = &e. (L)
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Again, ¢4 = A + 1, therefore
= (A4 =14na4 20D Ay 10 =002 s an,
or, introducing the subject £ (z),
Sf@+nh)=Ff(z)+nAflx)+—15—
Again, 1 =+ — A, therefore
1= (= B)" = " A2

or

n(n

Aﬁf()—i— (=22 Asf(a)+..... (IL)

n(n n(n—1)(n—2)

1) n-—2
NTA =TS

APTAR L (—1)" AN,

n(n 1)

@ =fletnh) —ndfis+ (=10 + &
Flad (n—2).0) — 08 T.IQ)%—Q)A3f{w+(n——3)k},&c

]
b @
J

In the expansion (II.) put nh =k, or n = —l— : therefore
E.(k=)(k—2h)

fle+B=f@ +k5 f@) + 2520 (4 )f()‘l“““i“@—g“‘* (3) 7@ &e.

Now suppose » to increase infinitely, & remaining constant, the quantity 4, which

is the increment of », diminishes infinitely, and the operation - in the limiting state

when A vanishes, becomes d,. Hence

s i .
f@+k)=f@)+kd f@)+17d2f @+ 15543 @ +,&. . (IV.)
The expansions (II.) (IV.) are Tavror’s theorems for the development of functions
by means of their finite differences and their differential coefficients respectively.
Again, if 4 be written for % in the expansion (IV.), and the subject be omitted, it

becomes
/z3 az

=

3+’&C""" (V)

and
h2d9 /L3d3
A=hd +T% +155&

§ 3.

7. The expansion given for the operation +, of changing x into x -+ A, possesses
remarkable properties, which we propose to develop in the present section, from the
importance of the theorem of TavrLor, which it expresses.

Representing, as usual, by + the operation of changing « into x 4 %, and by J/
that of changing x into -/, the quantities 4, /' being independent of x, and, lastly,
denoting by +, the operation which changes « into # + A 4 A/, we have obviously the

identity
Y =
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and putting for these symbols their expansions found in the preceding article, we get

fubng + 5% + Tog e ) 14 wa + 5% + 555 e

)92 dzs + hI)Sd 3

h X
O e

=1+ b+ d + 22

a relation which may be verified by actually compounding the two polynomials of
the first member.

Now in this act of verification the operations % d, %' d, have only such properties
as are common to any two linear operations which are relatlvely free: hence if 0, 6'
represent any such operations, we have generally

{1+0+1Q+] +,&c} {1+0’+12+103+’&C}

w+m9 0+
+t1es:

=1+0+0)+

and it is easy to extend an identity exactly similar to any number of operations which
0"3

are all relatively free; for in introducing a new polynomial, 1 4 ¢' + 5+ 1as+%e.,
we have only to regard 6 4 ¢ as itself a free linear operation, and therefore the result
would be
0+ 0’ + 0")* 040 40"
L4 (040 +0) + + O s

8. If the subject be a function of two variables, x and y, then using 4, to denote
that # must be changed into x 4 4, and +, that y must become y + %, these opera-
tions are relatively free, it being of no consequence which operation is first performed ;
therefore the operations A , A, of taking the corresponding finite differences are also
free; from whence, lastly, the differentiations relative to x and y, represented by
d,, d,, must be of the same character.

Now since

kd’ rBdj
Vo=1+hd 4+ 5% + 755+ &

and

B2dp Bdp
‘l‘y—l+kd+ y+1'2'y3+)&c'

therefore, by the general identity of (7.), we have

(ide k) | (bt 1y

Yoby =1+ (hd, + kd) + + 55 +, &e.

And now introducing the subject f(z,y), and expanding the terms in the right
member of this identity by the formula given in the preceding section, it will be-
come, in the common notation,
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1.2 dz® ' 1.2.3
d.f(®y) Ef(my) Efey) Bk

—ay kG MGy - T ke

@A fleyy) B & fley) R
+ dy* " 1.2 de dy® * 12+&

+

& fx,y) i3
+ d(.yS - T g s e
If a third variable z becomes z 4 / by a third operation ", then the actual com-

2 79
position of the equivalent polynomial 1 4 /d, Zi dg -+ ll f,l 5 +, &e. gives

Y V=14 (hd, e dyH1 d) g (b d A dy 1 d) g (hd, 4k, 1d )+ &e.

and so this method may be extended, whatever be the number of variables.
9. Let 0 denote any linear operation, and make

6? 63
=1 +0+m+——~—].g.3+,&c.,

then O is itself a linear operation; and if in (7.) we put 0 = 6 = 6" =, &ec., and sup-
pose the number of these operations to be », we have by that article

n? ns 3

__l—}-n()+1 2+ 2‘3-|—,&c

Again, suppose

0 62 62
¢=l+——+l 2m2+1 2. gm3+)&c"

m bemg any positive integer, we have by the same principles

=140+ 15+ gyt ke =0

nd 63
¢'—’1+_ 0+m2 1. 2+m3120+)&c

Hence if ¢ denote an operation which, repeated m times, gives @, and in which we
1 n

shall employ the notation ®_”7, then ¢" denotes the same as @7"—, the latter being the
operation which, repeated m times, is the same as ®". With this meaning understood,
it follows that

n
- n n? 62 n3 §3
O" =1+ .0+ 5. 75+, 1a 3T &
Lastly, if we put
n? 42 73 43

Q=1—-nb+1 123,+,8>cc,
compound this by the formula of (7.) with the operation

n? §® nd 63
=1+n0+55+733+ &
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we have
Qe"=1+(n—n). 0+(" "”+ &c.=1;

or if we introduce any subject f(¥) ; 2, ¢" being necessarily free,
Lf(@)]Q¢"=[f(2)]¢" QA =f(2).
Hence 2, ¢" are mutually inwverse operations, the action of the one on the result of

the other restoring the original subject. 2 may be represented by ¢~", attaching to
this symbol the meaning here assigned.

If n represent any quantity, positive negative, integer, or fractional, understanding
the conventional notation by the definitions laid down, it follows, that if

g2 63
O=1+0+75+ig3s+ &,
then shall
n® §3
__1-|-na-|-l 2+] 5+, &e.
10. Suppose 4 to be simply the operation of multiplying by unity, then
1 1
@=l+l+m+‘l—.é+,&c.;

and putting as usual ¢ for the sum of this series, ® represents the operation of multi-
plying by ¢; put therefore in the formulee of art. 9. 1 for ¢, and ¢ for ©, and then

" n? n3
#=1l+n+ 735+ 15+ &

The properties of this series when any way involved are common, as has been seen,
to those in a series where ¢, any linear operation, is put for n, and therefore we may
write the purely symbolical identity

d= 140+ s+ &es

where 4 may be an imaginary multiplier, or any species of linear operation.
Thus if 4 = & d, and 4, denote the operation of changing « into « + A, we have

g = ¢,
x

by = gkdy

By = R,

Similarly

all of which are proved by the formulee of art. 8.

11. Having seen in the course of the investigations of this section the signification
of the indices of operations when fractional negative or even purely symbolical of
linear operations, it is easy to prove by similar steps that in all cases where ¢, ¢ are
relatively free,

0+ o) = ¢" +ne”"la'+”(" D =22 4 e,
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for since
(0 + 97)7& (9 + 01)7’3 _ (9 + g!)n-}-m’
it follows that the composition of the polynomials

{e" +nd "ty +”(” 2 ”‘29'2+,&c.} .{a’”+ma"‘“19'+”—‘(—1”’—.72—~1).0’”'29'2+,&c.}

(n+m)(n+m—1)
1.2

— n+m+ (’)2 +m) 073+m—-10r+ n+m-— 0’2 &e.;

and since nothing in the actual verification of this identity depends on their being
integers, for which case the expansion has been proved, the identity holds generally,
and therefore if m = n, and we take p, such polynomials, we have

{gn__‘_ an-lg,+7z(7l 1) i Qgrz_l_ } ___gnp_‘_n 0np—10,+(np)gﬂ']é-— 1)'0.,”,_20,2

frane= ot} =0T e
— 9
Put n = >
' g p
.-.{01’4—%.01’ 04..... }» =04 gl .. =0+ 0),

or

s (—~—1) (52

g

(g_i_gl)}’ _|_ q 01’ g!
Again, since
{0n+n0"_10,+n(72-—1) n—29,2+&c } {g-—-n g 0,+n(1n+21)0—n— —&e. } =1,

we have

02 4 &e.

L@ OTr=0"— 00" 4 &e.

These formulae applied to quantities or fived operations, suffice after the usual
methods for calculating their finite differences, differential coefficients, &c.

§ 4.
12. Suppose ¢ to represent any operation which performed on a subject [«] gives
y as the result, then the inverse operation is denoted by 4=, and is such that when
[v] is made the subject » becomes the result.
Thus b denoting the operation of multiplying by a quantity 6, we have
[alb=c ..[c]b7 ' =a.
Again, + denoting the operation of changing @ into @ -4 A, we have
[f(@)] 4 =09 (2), where ¢ (¢) = f (¢ + h)
Lo @14 = (@), where f (2) = ¢ (v 4)

MDCCCXXXVIL,

b
(@]
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and in general if
(] b=y then [y] 0= ! = u, and therefore [y] 0=' 0 = v,
the compound operation 4= 4 or ¢° being equivalent to no operation.
To invert a compound operation we must invert the order as well as the nature of
the component operations, which rule must be strictly observed when the latter are
relatively fixed. For let

(@] d=y (y]d == and therefore [2] 00 = z.
Then [x]0~'=y [y~ ' == and...... x]0- 1" =«
which proof is applicable, whatever be the number of the component operations.

If all the component operations be alike, we have then but to change the sign of
the index to obtain the inverse, thus if

[u] 0" =1y, then [y] 07" = u,
as in the last section.

13. The consideration of inverse operations leads to the introduction of the ap-
pendage, which when the operations are linear must be annexed to the result to give
it the most general value of which it is susceptible, for the inverses of such operations
are themselves linear ; thus if 4 be a linear operation,

[X+&6=[X]0+ [§] 0.
Put [X]0=X,, [0=4,
hence [X, + 10~ ' =X ¢
= [X] 0= + (&] ¢~ l»
which shows the linearity of 4= .

Now suppose the nature of ¢ to be such that [P] § = 0, the subject P being thus
in some way connected with the nature of the operation ¢, then if we suppose

[X]0=y, wehavealso[X+P]d=y, hence[y]d~'=X+ P,

this being the same as writing y + 0 for ¥, since [0] 6~ = P.

The appendage therefore in a linear operation is the result of its action on zero ;
P will express a form, but its magnitude must be susceptible of an infinity of values,
that is, it contains arbitrary constants which enter as multipliers, for if « be such a
constant, we have in general [X] ad = [X]da; and supposing X = 0, we have
[0.a] 0 =[0]da: therefore whatever particular value may be aussigned to [0] 4, a
more comprehensive value is attained by its arbitrary multiplication by @. A multi-
plier is the most general form in which the operation represented by @ can enter
when X is a function of but one variable ; but it admits of other forms more extended
in cases of several variables, as may easily be perceived: thus [ fy] representing a
function independent of @, then [fy] "y, = f(v), J, denoting the operation of chan-
ging x into @ + & : hence [ f(y)] A, = 0. Then if X be any function of @, and & be

any particular value of [X] A;l, we shall have more generally [X] Aw'l = ¢4+ f(y),
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which includes the former; since, the form of f(y) being arbitrary, we have £ alone,
amongst the infinite number of values of £ + f ().

In compound operations, the appendage obtained by the first simple operation be-
comes a new subject for the succeeding operations, each of which may in like man-
ner introduce a new appendage.

14. The operation +/,, taken directly or inversely, is incapable of introducing any

appendage : for suppose [0] ¢;‘ = ¢ (z), then [¢ (2)] 4, =0, or ¢ (- h) =0, which
identity being general, we may put z instead of x -4 h, which gives ¢ (#) = 0; from
which it also follows that [0] " = 0.

To find the appendage introduced by d,~', suppose in the same way [0] d,~'
= ¢ (x), hence [¢ ()] d, = 0, therefore [¢ (x)]d,? =0 [ (x)] 4,2 =0, &c.; and since

z 2 P (x
o) =0+ 5 4 L T2 4 ke

hence we have ¢ (x + h) = ¢ (x), and % being arbitrary, we may put it = — , there-
fore ¢ (x) = o (0), that is, ¢ (x) is constant relative to @ ; if therefore C be any arbi-
trary quantity independent of «, we have [0] d,~' = C.

Again,

[0]d,~% = [0]d,~" d,~" = [C] d,™" + [0] 4,
as above stated; but since [C,1d, = C, and [0] d,”' = C', any constant therefore
[0]d,~? = Cx + C, and in general
01d™"=A 2" "+ A, 2" 2+ Aa" ...+ A,
where A, A,....A denote constant muitipliers.
Lastly, let [0] A ~' = ¢ (2), or [p (¥)] A, = 0, therefore ¢ (z + &) = ¢ (2), and
by Tayror’s theorem (dividing by ¢ (x),

<P(x) 3" (x)
o+ 50 1+ e

where ¢' (z) ¢" (x) &c. are the differential coefficients of ¢ (x); this identity being
independent of x, the latter quantity must disappear from the series: put therefore

¢ éi)) = U ,n being independent of x; hence
P ="l W= —Fe@ ¢@==" e, k.
therefore

—— 3
1="“{"“ 7;5"‘1224 &c} { 12+1@34 &C}(“)
At present suppose # the least real value which satisfies this equation, then

Csn.z‘«Z—l’
2¢2

P (v) =
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also since ¢ (#) = ¢ (¢ + &) change xintox 4+ A .. ¢ (v + k) = ¢ (x + 2 k) and

manA —1

generally ¢ () = ¢ (x &= m h), m being an integer; and since ¢ () = Ce¢ mh
satisfies this equation, it follows that 4 n 4 2 n 4 3 n, &c. satisfy the equation (a.);
the complete appendage will therefore be

ned —1 2nz A —1 —nzA =1 —2n2a =1
Aye b FAe +....4+Be + B, h “+.....
the number of constants being infinite.
' § 5.

15. When the simple operations which compose a compound one are relatively
free their places are transmutable, but when fixed a mutation of places will require
an alteration in the operations themselves.

Let +, denote the changing of x into « 4 % as before, and let 4, be any operation
affecting «, or, which is the same, fixed relative to +,, then considering ¢, as a sub-
ject, put [4,] 4, = ¢, and if the compound operation [«] ¢ /_be proposed, its value
by transmutation is [«] «,_ ¢, for in the first compound operation +, affects all the
preceding symbols as forming its subject.

Again, let [«] 0, A, = y be proposed for transmutation, we have

y=[u]l (=1
= [:u] (‘Lx 0,.1' - 9.1;)9 )
and putting A_ + 1 for 4, and 4, A_ for the finite difference of 4, considered as one
operation, we have

y=[u] (A, 0. +0,8)=[u]4,A,
Lastly, divide this identity by %, and then put 2= 0. When %@ becomes d,, and ¢,
becomes 4, we get for the transmutation of ¢, d,
(] 0, d, = [u] (d, 0, +9,d).
These formula of transmutation separated from the subject are respectively
0,4, =4, 0,9,
0,A,=A, 04,40 A,
0.d, =d_0,+0.d,.
When 4, is constant or not dependent on x, then
b, =0, 6,5,=0 0,d =0,
and these formulee will then express merely that 4 , 4 , &c. are relatively free.
For example, let ¢, simply denote a multiplier, then ¢, 4 will be 4, 4+ also a mul-
tiplier, 4, A, = 4, ., — 0,, which may be represented by ‘¢, and 4, d, = the limit of

ex+ T ew
3
by ¢, then the general formula becomes

, when / vanishes, or the differential coefficient of ¢,, which may be denoted
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[w] 6,4, = [u] ¥, ow-}-h
[w] 6, A, = [u] (4, a:t-{-h +'4,)
[w] 0, d, = [u] (4,0, + 0.).
Again, let the subject be f (2, ), and suppose now 4, to be the operation of changing
y into y + ¢ (x), then ¢, or 4, , , is the operation of changing yinto y + ¢ (z + 4),
8, A_or ‘4, is the operation which changes f (z, y) into

floy+ o @+ —flny+o @} =f{x,y + 0 (2)}

af{x !
A s PO g1 (@) . b+ &= f o,y + 0 (@),

—_— . df{z, . .
and therefore ¢, d, will give Jﬁ—c%ifﬁ- and is equivalent to 4, d, ¢' (2); in this

case we should have
which result may be also deduced by putting for 4_its equivalent symbol ¢%¢®,
which gives

gz- d.z- = Edy¢(x) * dy ¢' (.T) = éx d.’/ ¢' (.Z')’
where ¢' (2) is written for (i%(;l
This example shows how operations may themselves be the subjects of other ope-

rations.
16. We now proceed to consider the transformed values of ¢, ", 0, A", 4. d",

when # is any positive integer. First,

O, b, =, 0,4, =0,3

01' 'HLJ:Z = @.z‘ ""L.z' = \lll.r mx'
Now ¢_+, regards @, solely as the subject of the operation +,, and

by the first formula; therefore
\Lx mz = 'Hbzwmflz'
and in general if we suppose
o:c ¢xn-1 = rﬁbrn—lm;n—l = ¢1"

0,4, =@, ¥, =4, 0, ¢,

by the first formula ; therefore
02' \LG = \Pxn-l '4'1' 02‘ '4/‘”” = ¢xﬂ 03' ¢.’C"'

suppose therefore

then

but
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This general formula may be more readily deduced by considering that +J," is the
operation of changing « into «# 4 » k, and consequently " may at once be substi-
tuted in the first formula for +J,.

Secondly,
0.0, =00 4 +0 A,
therefore
0z sz =A,0, s,bx A 4+0,A, A,
but -

0,4, 0, =0, 0, V2404, A,
writing ¢, +, for ¢, ; and similarly
gz A'c A.r = A.z ° 9.2' '4".7: Aa: + Aa: A.rZJ

whence

. g‘zA.z?:Aw‘z’a;:ﬁ;Z—l-2A.r'9z¢zAw+ngx2'
generally suppose
Az' A$n—1 = Aa:n—l * g.r ’ben—l + (n_ 1) A{:L——? 'W A.r
(n—1)(n—2) —s T ATs A3

+ 1.2 'Axn s'gz'ﬁbz'n 3A:v2'

Now if we write 4, '4/ for 4, in the fundamental formula, we have
gxlpmmAz = A.z" ‘4.r¢.r + Hz'\]{rm—lAm

each term when we put for m, n — 1, n — 2, &c. successively, will thus be divided
into two, which being placed in two distinct lines will give

0,0 =A"T4 + (=1 A T A, 48T DOTD A2 GG AR ke

1)2

+An—-1 0'4/""1A +( Amn—-e 0'&]J"~2A2+&C

= AT 40 A 04 A, + M) AR g T TAR 4 e
which is the general formula sought for.

Divide now by 2" and observe that é;f becomes d, and +}, becomes unity as a mul-

tiplier when 4 = 0, hence the third general formula
n (n 1)

0,d"=d"0, +nd"" .0 d + 2.0 2+ &e.

which when 0, represents quantity is the theorem commonly called Leisnirz’s.
17. We next proceed to investigate the formula for negative indices. First since

,” ! denotes simply the changing « into « — &, we may write 4, =" for }_ in the first
formula.

Therefore
0.70 ’4/.2'_.1 = ""/z‘l * 0.1: ’“Lx—l
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more generally

0,4, =4, 0,9,
P ol AWAY
87108, =0, + A;l 0,5,
Put now 6, ), ! for §,, and therefore 6, for 8, ,; hence
AT TIA =0, 40,700,977 4,

Secondly, since

0,0,=24,0

therefore

therefore
0,0, =210yt =010, AN

Put 0, -, 9_J 1 for 0, thence we have
0,0, '=4,"1.0, 1L$_1 — 8,720,070, F AP0, 7PN AT
or we continue this process indefinitely
9,0, 1=A2"".0 09,1 —A,"%.0, L, 720, +48,7%.0,+,7 A2 — &e.
whlch is the same as the general formula for 6, A * when n = — 1.

Again
0,072 =A0,"".0,, . AT =AT 0,7 A, A7,
but
“1p =1 A =1_ A =2 g o — -2 9 =g A -
ATV LT AT =ATR 00, = AT 0, A, L A7,
and
A0 LTI A AT T =0,72.0,0,77 A, — A0, 4,7 A2 AT
Hence
0, Aw“g =A7"?.0, xlzx“Q -2 Aw‘2 L0, RN A;‘ +4,2.0,4,7°02.A.7%,

and in a similar manner it is easy to prove generally in a terminating series

— R 1) e
0,8, "= A, 0,4, = n A 0 G AL AT BN g SR A -t ke,
or in an infinite series,
n (n -|- 1)

N —(n41) g o (T - W)
0,0,7"=A,7".0,, " —nA, D0, mOFD A A~ o, ~GFAA 2 ge,

Thirdly, divide A, by &, and then put 2 = 0, whence
0,d'=d"".0,—d=".0,dd"

r T 2

=d 1. 0,—d?.0,d,+d°.0,d2— &e.

% (n—1)

A=) g AR AR .

0,d~"=d".0,—nd .0 d,. d-"422=D

=d, ™. 0,~nd, "9 d + ’Lg”-g’—) 0,702 9, d 2 — &e.

which formule admit of most extensive applications, whether 6 be regarded as a
quantity or a fixed operation.
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§ 6.

18. Before proceeding further in the search of the fundamental formulee for the
transformation of operations, we shall exemplify the theory which precedes by invert-
ing binomial operations and applying the results to some simple cases.

Let 6, 0 denote two linear operations relatively fixed or free, and let us seek the
value of (0 — )~ '

Put (8 — 0)—' = 0= 4 5, ; the latter being the difference of two linear operations
must itself be linear.

Hence :
1=0""+7)(0—0)=1—0"1044 0—10)
therefore
m (0 — 6’) =0"1¢.
Similarly put

po=0"100"" 4y
which gives
m(0—0)=0"10— (071 6)2 4+, (0 — 0)
whence
7y (00— 0) = (071 0)2
so again put
Ny = (9"'1 0’)2 -1 + 73
7= (07102071 + 7,
&e. = &ec.
We thus obtain
O@—0)"t=014 (07100 (070207 ... + OO 4 g
where 7, represents the compound operation (6= ¢')" (6 — 0')~". |
The same formula continued to infinity would be obtained by first putting
0= (1 — 6~ ¢)~* for (0 — ¢)~"; and since the operations represented respectively
by 1 and 07! ' are relatively free, we should have by art. 11.
A—0"10)""=1460""0+ (67" 6)% + &ec. ad infin.
When 0, ¢’ are relatively free the theorem becomes
(0 —6)"1=0""4 0720+ 0702407405 4+ ....07 0" 4 070" (0 — 0)~".
19. For a first example suppose A, to denote the finite difference, on the supposi-
tion that by the operation +, the quantity @ is changed into & + A.
Then A, ' is the finite integral, and in the usual notation of analysts is denoted
by 2, we have therefore |
f @)%,=[f @] W, = D =L @1, 4, 4 ey, T3 )
=fl@e—-h+fl@—2h+f(x—3h) ...
+flem=1h+ 2, f(x—nkh);
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where it may be remarked that if -’;7 be an integer, the final terms of the series would

be...f(2k) +f (k) + f(0), at any of which, if we suppose the series to stop, its
finite difference would be obviously f ().

For the next example suppose the subject to be f (2 4 y), and that by the opera-
tion 4, « receives an increment %, and y the same increment by the operation +J,, then
it is obvious that [ £ (z + v)] (¥, — ¥y) = 0, therefore [ f (z 4+ y)] (&, — 4,) = 0;
hence f (z + y) must be included in the general value of [0] (&, — A,)~".

Now

[0] (A, —A)" ' =[0]{A, " 4+ 1,72.8,4+ 8,222+ 8,773 + &c.}
and also [0] A, = ¢ (z) an arbitrary function of .
[0]a, =9 (). —%, omitting the appendage, which being a function of z would

not vanish with y, and which in the succeeding terms, if included, would only gene-
rate another series similar to that now formed from ¢ (z), and consequently in the
present case not add to its generality.

Again, -

(0] Ay“*=¢(w)-y](——,y—2-_,% for [y .(y —W]&y=(y+Hy—yy—h=2hy.

Similarly

—h) (y—2%)
1.2.3.48

(08, = (@) .2

Hence

, &c.

[0] Ay —a) " =g (&) + L. A0 (0) + L2 . a%0 (2)

) —Qh
F LU= =20 nsp (@) + &es

and since f (z 4 ) is included in this general expression, the particular form to be
assigned to the arbitrary function ¢ (z) is known by making y = 0, which gives
¢ (z) =f () ; in this formula the ordinary notation has been employed.

Suppose, for instance, £ (z) = a® and & = 1, then A" f (z) = a (a — 1)"; therefore

Y =d"+y.d".(a—1) +y__(ly‘:2_l_)az (2 — 1)2+‘y—(-y%1§)%:-2—).a’”(a— 1)3, &e.

or putting @ = 1 - b, and expunging &” from both sides,
-1 —1)(y—2 .
LBy =14y b+ 22D o 2O DO 4y g,

which is the binomial theorem, whatever may be the value of y.
For the next example let us take the same subject, f (¢ 4 ), and let d,, d, denote
the differential coefficients relative to x and y; then since

[f @+ 9))a=2: =0

- MDCCCXXXVII. 2D
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put 2 = 0 and “  becomes dz, %

[f (@ +9)] (d—d,) = 0;
hence £ (z 4 y) must be included in the general value of (0] (d, —d,)~".
But

Y being similarly d,; therefore

[0] (dy — d)~' =[0] (4" + d,7%d, + d,"° d? + d,~* d,} +, &)

[0]d,~ = ¢ (x)
an arbitrary function of x; therefore

[0]d‘2—¢(w) Y
omitting the appendage for the reason abovementioned ; also

(0] 4 =9 (%) . '11'2'

Now

since [4?] d, =2y ; and

[0]d, = ¢ (&) . =L

2.3
substituting we have
_ de ? a2 3 a8
01— a) " =@ +y F +ifs FE + v F ke

employing the common notation ; the form of ¢ (x) is determined by making v = 0,
which gives ¢ (z) = f (x) ; therefore

f@+y)=Ff@ +yf (@ +L5 ., (@) +, &e.

where f* (z) f" (¢), &c. are the successive differential coefficients of f (z); this is
TavLoOR’s expansion.

, -
If we put f (x) = o” and for the limit of A L write log (a), we get from this

a=1+4+yl. (a)-l- 5 (L.a)? +, &e.

These examples suffice to show the mode and use of the inversion of binomial ope-
rations.

§7.

20. To return to the general theory, suppose 0, 4, = to represent three operations
connected by the equation 6 = s z, where the subject is omitted, the identity being
supposed general ; the symbol s represents an operation which may be said to be in-
termediate to those designed by 0, .

If either of the extreme operations 0, » be given, and the intermediate « be also
given, the other extreme may be readily found for

0=z tand z=4+"10.
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A remarkable property of intermediate operations is that they are also intermediate
between any operations which are the same functions of the extremes.
For let
0i=uz
then performing the operation #
052 =42

put now for s = its equivalent operation 0+, and we have
025 = s 22,

Similarly if we suppose
oty =t

then

0 in = 2"
but

te=104;
therefore

0% s = 1 2",

Again, suppose the subject in the last equation to be one on which the opera-
tion 6=" has been performed, then that equation becomes
= 07" %",
or
0" =u42""
Again, suppose K an operation satisfying the equation
Om e = K.
We have by the parts of the proof already given in this article,
0" =+ K" =1 4",
or
r
K'=#""K=uxn;
hence

0% b= z;:”.
From these premised equations it follows, that if f (6) f () represent the aggregates
of any similar powers of the operations 0, z, with the same coefficients, we must have

generally
SO .o =1f ().

By this theorem, if £ (0) be known, f (x) can be found, supposing that we know « the
operation intermediate to 0, x.

21. We shall now apply this theorem to cases where 0, s are given, and therefore =
known, as above shown.

Let one extreme 6 represent the operation of differentiating relatively to «, and the
intermediate ¢ that of multiplying by ¢*%, then we have

dm an '= eax %

2D 2
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therefore
e d, " =,
but by § 5. .
0,d,=d,0,+0,d,
therefore
%d, =d, e —ag " = (d,— a) ™"
Hence

d,— a = » the extreme required.
Now if 0 = i #, it has been shown that £ (0) .+ = +f ().
In this case therefore

f(d). " =f(d,— a)
To find the intermediate operation between d, + band d,+-¢; b and ¢ not containing .
Put f(d,) = d, -+ b in the last identity, and b — @ = ¢ we then have

(d, + b) .l = =" (g 4 ¢)
S(d,+B) 80797 = =9 f (4, 4 ).
22. Suppose the intermediate operation s to denote ¢* considered as a multiplier,
‘P being a function of «, of which the differential coefficient is P, and 0 to represent
d, as before, it is required to find x. Since

dst =¢F .2,

therefore
w==¢ T, d,. ef,
But -
e =d ¢ 4 Pd =d T =P T = (d,—P)e*.
Hence
zx=4d, —P.
Corollary ;

f () .e* =< f(d, — P).
And if ‘Q be a function, of which Q is the differential coefficient, we have in like manner

f@d). e =% (d,—Q);
e f(d,—P).e T =% (d,— Q)Y

f(d,—P). e =T f(d,—-Q),
that is, ¢(2=® is the intermediate to the operations d,—P,d,— Q.
23. Let + now signify the operation of changing y into v 4 ‘¢ (), 0 being, as be-
fore, the operation of differentiating relative to x, and the subject being a function of
x and y, and *p (x) the quantity, of which ¢ («) is the differential coefficient.

hence

or

Here z=4s""d.
Now s~ is the operation which changes y into y — ‘¢ (z), and therefore, as in § 5,
¢='d, =d ' — ¢ (x) s~ d,; therefore

w=d,— o (z).d,
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Corollary ; i
f(dm)‘=‘f(de:—¢(‘r) d?/ 5
and as in the last article, if / be the operation of changing y into y + /; {¢(x) — F(2)}.

Then :
Sfd,—F(x)d)id=/{f(d,— ¢ (2)d,).

The example last given is capable of being extended to any number of variables in
the subject of the operations ; if that subject contain , y, 2, », &c., and s denote the
operation of changing y into ¥ 4 ¢ (), 2 into 2 + = (), » into v + Q (z), &c., where
¢ () = (x) Q (), &e. represent any functions of x, then will + be the intermediate
operation, of which d_and d,— ¢' (2).d, — »' (2) d, — Q' (z) . dy, —, &c. form the
extremes, the accents being used to represent the differential coefficients of the func-
tions over which they are placed.

24. Let one of the extremes, 6, be now supposed to represent the operation A, of
finite differences, on the supposition that 4 is the increment of .

Let : represent a multiplier P, constant or variable with «. Then

%= Pz‘l AP,
But by § 5,
PlA,=4,.P L, 4P A;
thence
% = Az.PP"” +.P'A,.P;
a4
and then
P, , 5=
£@).2,=Pr(a,. =+ T4, P,).
41
Thus, if
P =a .'.Px_,_h:a—l.a"'fz, Pw'"lAmz (@ — 1)““%9
we obtain

fB). a7 =aTif(ad, +a—1).
Let +J, denote the operation of changing x into « + £, then 4y, = A+ 1, and the
general formula of this article becomes

Again, if the subject be a function of # and y, let + represent the operation of
changing y into y + ¢ (z) and / that which would change y intoy — A, {p (2)},
where A, ¢ () according to the common notation stands for ¢ (z + &) — ¢ (), then
by a similar procedure we shall obtain the identity

f(B) = uf (d,/ = 1).
25. In the identity

P
Pw hand 1).
24k

- - a—1 a—1 1
f(Am).ll h= q "fa(Aw+ P )put 2 =—b.‘,a=m
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hence
SA) A+ b= (14 bRf (A, —b).

Now by the nature of an identity both sides in this expression would be alike, if
expanded according to the powers of b, the coefficients of like powers must therefore
be equal, and in consequence the identity must remain if b instead of being a mul-
tiplier represent any operation which is free, relative to A, thus if b =24, 1 4 b=+},,
and therefore

FB) b =S (B, — )

As a particular example of this, suppose the subject to be ¢ (y) independent of x, and
S (A,) merely to stand for A, then

[e )] (A) =0,
the general identity therefore becomes

Lo )] % (A, — 4y) = 0,

or
[@ (3/ + -k-,f)] (B, — 8y =0,

k being the increment of ¥ ; now

[e(v+5)]t=e(+5 ") =o(y+r+5) =[o(y+5) ]%

which verifies the result deduced from the general identity.

26. Thus when the intermediate operation and one extreme are given the other
extreme may generally be found, but it seems more difficult to discover the interme-
diate operation when both extremes are known; here follow some examples of the
latter process.

Let 0 represent any linear operation, d, that of taking the differential coefficient
of the subject relative to x, and + the required intermediate.

Then
0i=1:d,
=d i+ T;i—w
perform on both sides the inverse operation +—!,
Hence .
0=d,+:d, it
or L
id, Tt =0—d,
Suppose

(=) = L L f(0—d,) + {Jfﬁl—'—;ﬂ}  &c.
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then by § 3,

Flm e =1 — 0 — d) + LS e,
and .

vd, = SU-% F0—d)d,
also

(0—d)i=(0—d) %),
Now 0 — d_ is free relative to its own functions, hence
0—d,=f(0—d)d,;
therefore
fO-d)=0—d).d, "
from whence ¢ is known.
For a second example, suppose « the operation of changing x into « 4 4, A that of

taking the finite difference on the same hypothesis, 0 any linear operation, then « is
required to be such that

($—0)s=4sA0.
By art. 15,
A=Ay +iA
=did—id+iA
= (=0T

Substituting we obtain
W= 0= (b —i.ig ) igo
To satisfy this identity, suppose

‘. T’n‘—b'—l =0;
now s < is free relative to s, hence

o=
prefix to each side the operation ¢+, which only alters the subject, which is perfectly
general ; therefore

=y \]J .03
hence the preceding supposition fully satisfies; therefore we have this theorem, if «
be determined such that

ol =0,
(=0 i=:sA0,
F=0) =1 (a0).

As a particular case, suppose 0 to be a multiplier P, then s will be another multi-
plier v,, such that
Uy o (vw-i-h)"l = Par’

then shall

and
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or
(log vz) Am =- ]‘Og Pa:’

from whence v, or s is determinable.

§ 8.
27. In this section we shall give some examples of the use of the formulee inves-

tigated in the last section. In general

d, e =" (d, — a),
therefore

d,—a=:¢"""d, "
Put for  in this formula the terms of the series 0, 2,2 A, .... (2 — 1) . &, and com-
pound all the binomials which result from these substitutions, hence

d, (d,~B) (d,—2h).....(d,— (m—1)h) =d,.c~"d P c~27d 27 ... g=(0=Dhsg n—Dps

— —~ha ~he —he —ho (n- Dha
=d, " d, """ d ... d,e"d, e \
Now

T

d,¢~* = h d,, putting y = ¢ 77,
therefore

d,(d,— k) (d,—2h)....(d,— (n— 1) h) = d," . k" """,
Example. The expansions of (a + b4)", viz.

n(n 1)

" +nath f —— . a2 B2 I, &e.

and

Ll @+0) +{"5% ] +.&

being identical when » is a quantity, ought to remain so when » is a linear operation,
to verify which, suppose n = d_, now it has been shown that [ f (z)] &% = f (x + &) ;
hence [ f(z)] (e + b))% =f{z +1..(a + b)}.

But

(a-+b)dﬂ?=adﬂ"+dwad%‘_lb+d‘”([fx.; 1_) d—zbz_l_ w( — IQ)(g 2) a‘lw'?’b‘"’-l-,&c,

— gl d,(d, - 4,(d, —1) (4, —2) (D)3
= d* {1+d PRI 1 7 ( ) + 1.2.3 (Z) +’&c‘}
But by this article

d,(d,— 1) (dm—-Q)...(dm—n-—I—1)=dy".y”,ify=e‘";

therefore
@rife=a= {1442+ 75 () +7%5. (D) + &},

and now introducing the subject £ (), we get

Flodl. @by =f(e+1@)+ 2 LG BF I ) ke

which series, if we substitute for x its value L. . y, and put £ (1. . y) = ¢ (¥), becomes
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2 22
p(ay+by)=0(ay) +£f-dﬁ(jy) + [l’_yz -dzt;fd(;f) +, &e.
which being also deducible from Tavror’s theorem gives the required verification.
28. Let v, v, v;....v, represent functions of x as multipliers, or other operations
fixed relative to d,, it is required to find the polynomial arranged according to the
powers (usually called orders) of d_, which shall be equivalent to the compound ope-
ration represented by v, d v, d vyd_. .. ... v, d,. '
It is easy to see that this polynomial cannot contain the powers of the differential

‘ T . dv\2 .
coefficients of any of the multipliers, that is such as (?i%) , &c.; moreover, if we sup-

pose v; = ¢, then % = o," . €""; thus the order of the differential coefficients of
v, in the required result will be the same as the power of the multiplier «,* when we
substitute ¢ for v; ; and the same method will apply to discover how v, v;, &c. are
involved ; and when ¢, «,, &c. do not enter as multipliers we thence know that
v; v, &c. are themselves multipliers, and not their differential coefficients. This being
considered, the question is reduced to find the value of the compound operation
gt d ¢t d, ™d,..... ¢*»* d, arranged according to the decreasing indices of 4, and

. d"v dPy
then where we have «," ¢ “ if we put——m, and when we have oy’ €% put d.r:’ &ec., we

shall obtain more readily the result of the question proposed.
Now by the last section

% d, = (d, + ;) .e"%;
therefore i 1

e d " d, = (d, + o). gata)s d,= (d,+ o) (d, + o) + ) glata)e
Similarly

it d, et d, ¢ d, = (d, + o) (d, + 0y + 0g) (d, + o + o+ ) ot
and generally
g = (0 ) (4 oy ) oo (b g ) o

If therefore we expand according to the decreasing indices of d,, the compound
operation,
dy o) (dydoyF o). (dyt o+ oyt ... ). 697 625 g7, g7
we shall then have only to put v, for ¢4%, v, for ¢%%, &e.
%—Zl for o, €7, % for o, e™”, &c.

To effect the composition above indicated, let us seek the product (arranged ac-
cording to the powers of z) of

@teo)(@toto)(@totota)...0taFatat...+e)

MDCCCXXXVIIL, 2E
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!

Represent this product by
DA At A T A A,

the general coefficient A, being the sums of products, each of which contain m factors.

For A, it is easily seen that its value is

n“l + (n—' 1)“2""‘ (n'—2) wS_I" ...20&n_1 +ano

Again, A, consists of products such as ¢, @,, @, o3, o, a3, &c., and pure powers, as
%, %, &e. ;5 the general form of the first class of terms is «, «,, and we now proceed
to find its coeflicient, or the number of times this combination occurs, which number
may be denoted by («, «,), and supposing p less than ¢, no factor preceding x -+ «;
+ o, + ... @, will be concerned in forming the combination in question, and in the
factor itself and the succeeding ones the terms preceding «, may also be neglected.

The factors commencing from the above, arranged horizontally, will form this
diagram. '

Ao +...+ o
a:+(x1+...-]—oop-|—ocp+1

.........................

x4+ o + @yt —|—ooq—|-oog+1
A i R R aq+oo,1+l+ocq+2,
&c &e.
Now if &, ; were placed where the asterisk stands, the combination of «, with &, and
«, 1 would be alike, .. (&, ;) — («, ,;,) = the number of combinations of one

term at the asterisk with the terms in the vertical column of «,, except ¢hat , which
is the same horizontal line with the asterisk; it is therefore the number of terms
minus one in that column which (since p — 1 factors precede the first above written)
will be n — p.
Therefore A denoting the finite difference, when g increases by unity we have
A (s, 0) = — (n—p);
therefore
(@, @) = (n—p) (¢ — q), ¢ being independent of g.
Suppose g = n, («, ,) Will be the number of terms minus one in the column of &,
since o, enters only once; that is (¢, &,) = n — p, therefore c —n = 1, or c=n 4 1
which gives
(“p “q) = (72 "'"P) (n —q+ l)'
As for the coeflicients of the powers as 2 denoting such by a similar notation (e,2),
they will not be affected by the supposition that

oy =00,=0...0,_y=002,,;,=0...0,=0,
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(n—p)(ﬁ~p+1)
1.2

they are therefore the same as in (1 4 «,)* 21! that is which is
y P

half of the formula obtained by putting ¢ = p.
Hence

A2=n.(n—1).“12+(n—1) (n — ) 2_I__(n—Q)(n 3) w2

3 g F...n—=1)—1)0 0,

+r—1Dn—2)ma+m—1)nR—3)ae+...
+nm—=2)(n—2)aya;+ (n—2)(n—3) ey +...
\ +(n—3)(n—3)aze, 4+ ...

In like manner we may classify the terms of which A is composed into terms of

the forms «, o, «,, ¢,2 @, ¢ 3 respectively, p, g, r being arranged according to magni-

tude ; their coeflicients may be represented as before by the same letters in brackets.

Every combination of @, @, may be-combined with «,, except such as are formed
from the @, and o, which are in the same horizontal line with it, if these are erased
the number » is reduced to » — 1, and the combinations of «, o, are then by what

has been already shown only (z — p — 1) (» — ¢) in number, therefore the excess of
the number of the combinations of «, with @, o above that of &,  ;is (n—p—1) (r—gq)

or taking the finite difference in reference to r
Algae)=—@m—p=1) n—9);

thence

(wp @) =@0—p—1)(®-q) (c—r),
and putting » = n we find as before ¢ = n - 1 ; therefore

(gpo,0) =(n—p—1) (n—q) (n—r41)
and generally if s > », » > ¢, ¢ > p, &c., then by the same process

(# o a,0,....)=(Mm—s+1) (n—r)(n—g—1)(n—p—2).....

Again, if we erase the , which is in the same horizontal line with , the number of com-

binations of the remaining terms «, (in number n— p) are (n — ) (1n ;p - ]), and since

the number of terms in the vertical line where «, stands is » — ¢ + 1, it follows that

(2 ) = (n —P)(ln.;'P —1) (

n—gq-+ 1),

and generally

s g
(o)
(n—s+1)(n—s) . (s'times) (n—7) (n—7r—1)...(r times) (n—g—1)(n—g—2)...¢ times

1.2. . 1.2...77 : 1.2...¢
2E2
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Lastly (=) is the same as if all the terms @, «, &c. were zero, except «, and is
therefore

(r—p+1)(n—p)(n—p=—1)
1.2.3 .

More generally

__(n—p+1)(n—p)...(p times)
(“pp)—' l.Q...p’ :
We have thus investigated the coeflicients of every combination which enter the
ar . .
whole product, and then if only ;i__:_{"be substituted for any general symbol (oa;’ ), the
i &2

required development is completely obtained.
It may be remarked that the coefficients of the combinations of consecutive terms
are pure powers, thus
(0 ) = (n—1)2 ayo3=(n—2)%&c o ayo3=(n—2)>%
29. By the preceding investigation we have obtained the following general formula,
in which the subject is any function of z:
?1..§x22gﬁ3gx;;%_‘,z§ — da“" + dm""'l {l‘;‘_l_?!. + (n — 1) vj;; + n—2) v;l;?z' +... 7_3%}

V) Vg Vgees, v, dx

- dv dw,
+a oD @— 1

dv, dvg dv, dwv,

+ (n—1) (n_2)mv3d.z' + (n—1)(n—3) v dzv,da +ee
dv, dv, dvy, dwv,
+ (n—2) (n—2)vgd;.;;33;+(n—2)(n—3)v2dw.v4dx+
dvy, dv
—|—(n—3)(n—3)vsd;.v4d?z,+...
n(n—1) d?v, (n—1)(n—2) d?v,
2 'vld.r2+ 2 ‘v, d 2®
(n—2)(n—38) d’v,
+ ) ’v3dw2+"'
dv, dv, dv '
+d,? { (n—2)(n—2)@n—2) "uldtz" vgd?z' v;,div + &c.}
+, &e.
Put v, =v, =v;=...=v, = v hence,

‘ d
(’U dm)n — d,;” vn + n(n; l)dwn—l vn—-l . E_;_;

—afl=Nr+ NEBn—=9 _pd¢ =D+l L4
+d,' { 2.3.4 VT 2.3 LA
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and similarly if we put in the general formula v, = 1, and write v, for v,, v, for v,, &e.
and then multiply by v,, finally making all equal to », we obtain

(dz,’!)) dnvn_‘_( 1)"dn-—l n-—lgv

x
—ofn—2Ym—1nBnr—25) , dv2 mn—2.n—Vn ,_4d*v
+drm% 0 2.3.4 vt gt )2(3 2 g ldxﬂ}""&‘
Put now % for v in this formula, whence
1m _ n—1).n ] ep1dv
(do~)'=dt o™ " ——5— .d " o" 13}_

" —2m—1nn+1 —p—o dv? —n—1 en1 @
+ 4, 2{(1; )(n2.4)( Lo ZZE“(” ;(ns %y ld—ﬁ}-h&&

30. Change of the independent variable.
When wis a function of ¥, and y of x, then it is easily shown that

d dy\ ! it . .
dZ = dx ( ,ordy=d_ . (R%) omitting the subject % ; hence by substitu-

tion in the preceding general formula we have

-1 —n—1 2
(dy)—-d ( _n—l)n d"" (d_y g}%
dn__g{(n—Q)(n—l) n(n+1) (dy —n—2 flf_;_y 2 (n 2) (n-—l) n (dy -n—1 d’
da®
+, &ec.
Thus, for example, if n =38,
-4 g2 -5 —4 3
= @) —sm (@) B Ep @)@ -7 B
and

&r (d_y -5 dey) (dy -4 d3y
iy =3 \ds

As I am not aware that any formula has heretofore been given for the general
change of the independent variable, I shall here add a reinvestigation of the same
subject on simple principles.

When 2z is changed into « - %, suppose y to become y + %, and » to be changed
into u - /1.

Now u -4 / may be expressed by Tayror’s theorem in two ways,

2 3 3
utl=ut P g T8 T T ke

du 2w du B
=u+2—g}.k+a—§§.'—'—] ‘2+@3.——‘—1'2.3+,&C.

d 1 . . % . e . .
Hence E—; Ta 518 the coefficient of %" in /, that is, in the expression

Pu B Pu B "
l=d.z' b+ 1s+gsrast +dw"‘12 - 1> &e.
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and since it is visible that 2 may be expanded in the form A %k 4+ B 2 4, &ec., it will
be unnecessary to consider in / any term after gf;, . T""ék‘““?;

m

du . . » . . .
Hence 77 is the coefficient of A", when for 2 we substitute its value in terms of % in

the polynomial.

dﬂu n dr- n—1 u n--2 . du
H=5 0 +n.o— h —[—n(n—l)d — +...2.8.4...n57.h
Again, k is given in terms of 2 by TavLor’s theorem.

dy d*y B h®
k=g h+ g1 2+d43123+:

. Put for abridgement
ds &y -1 71,9 d4 d'y
"“d.z"" ( gt T 5.3 Tah ‘2, 3 4+’&c
The equation for determining h in terms of k becomes then
dy ~1 _
h— {k(ﬁ) —-hY} = 0.

In a memoir on the Resolution of Algebraic Equations, published in the fourth
volume of the Transactions of the Cambridge Philosophical Society, I have proved

the following rule.
If ¢ (x) = 0 be an equation which contains only entire positive powers of z, and

f (z) any other function of the same kind, of which the differential coefficient or de-
rived function is /' (x), then the value of f () will be found by taking the coefficient

of —;7 in the expression — f' (z) 1.. g(;@

Applying this rule to the case before us we find that H is the coefficient of —;Z in

-G}

and consequently o J is the coeflicient of 5 in the same formula.

the formula

The first (2 — 1) terms in the expansion of the logarithm do not contain %" and
may therefore be neglected, instead then of

-G @) - )

we may use the series

L (k (dy\~" " 1 fk (dy)~! e =
;:{z(z;« ‘Y}’ +m{2(%‘: "Y} + &e. =5,
and the value of .

H, "o
(ilk 1sndx Bl (n—1) T T 2
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&%y d
+nm—-1)n—2). dn_zh"“‘q’-l— nd;‘

in the product of both which series the coefficient ot X % being sought will give the re-

quired value of Zﬁﬁ and this is manifestly of the form
&l " *u
Al d.z‘n+A2d n—1 +A3 d‘z.n—2+ +A
. . K. n—1 E,
A, is the coefficient of > inn A*~" S, or of ;zinn S

n

. O Of%inn(n—-l)k"“ZS,orofimL—_Tinn(n—l).S,&c.

Now if we observe that Y contains / as a factor it follows that the coefficient of %"
in the series S is of the form

+

oy .
h”" o= + &e.

and consequently
Aj=ne;, Ay=nn—1)a, Az=nn—1) n—2)e;...A, =n(n—1)(n~2)....1.0,
Therefore
a d"u d"u d"*u
dyzfz—nald w1 (n— 1) o, — n_1+n(n-— 1) (n — 2)a3 n_z-l—,&c
By taking in fact the coefficient of £” in S and multiplying it by h" we find that the
product Viz. oy d oy b oy B2 4 ... 0 BT 4, &e. s equivalent to

dx 2.3
1 (d?/ -7
~
..I_

dy\—"1 dy 1 &Py h
(m) ‘a2z Tar e +>&°-}
dy\—"—2 d2 1 /i 2
1/) ‘y —|— ys.m&c.}

(n+ 1)(n + 2) dy =n=3 g2y 1 By h 3
- 3.5 . a2 3 T g g ese

+ &ec.

Hence

o= (37"
T on dx

_ (d_’y)""’"l d“’_i/ _1—
2= " \da "dat 2

_n41 (@)-"—2 (d9y> (dy —n=l By
% ="9 *\dx *\e2da’ *2.3da®
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2d x?

——2 d3y d —n—1 d4 I
(Qd.z‘) (2 3dw3) (d d.zA 2.35.4

In general let

ey 1 o diy B "
7T +"’m% R Rt M +’&°) = Ym0t Ym1 -l + Y,z B2 &

Then

m-1, _(@+D@+9)...(e+m—2) (dy —w-m+1
(= D) - 2.3, (m-—-l) ( Ym-1,0
(et H(+9...(e+ m-——S) —n—m+2
2.3...(m—2) Y m-2,1
+(n+l)(n+2)...('n+m—4) dy -n— m+3
2.8...(m—3) Ynes,a

........................

__(d y —n-1
+ (a} Y 1, m—2’
m being > 1.
Corollary. Put u = =, then

dn

dy,,_n(n—l)(n—-2) s 9
where o
- nt1)(@+9)...2n—9) —nrd
(=) ta, = " 2n3 -1 Yn-1,0
_m+)(r+9...27-3) (dy —2n+2
n ) 7; N . (d—— Yo 1 &e.
('— l)n_ { (n+l) (272 2) d.Z' n—]O
--(n--1).n(n+1)...(272—3)‘(~-z Yy
d -2 n
+m=2)(n—1).. (2”""4)( ) Y-z &e. } (doyc) ‘
Thus

dy (g‘!g “"_(dy -
dz Y00 (- \dz) = \du«
dQ _/ "‘4_(dy =3 g2y
{2d.z' -%o} dz) =\aa) T
dy\~
d = {3 4.5 p0—2.5.(3) 1.1}(%

o (Y7 () (dy -4 By
._3.((7; 77 dﬁ,&c.&c.



